Aggiornamenti recenti Giugno 13th, 2025 12:44 AM
Apr 06, 2023 Marina Londei Approfondimenti, Attacchi, Minacce, RSS, Tecnologia 0
L’IA generativa non è immune dagli attacchi informatici: uno studio congiunto dei ricercatori di IBM, della National Tsing Hua University di Taiwan e della Chinese University di Hong Kong ha dimostrato che è possibile introdurre delle backdoor nei modelli di diffusione.
Queste reti neurali sono alla base di strumenti text-to-image come DALL-E e rappresentano l’architettura sulla quale sono costruiti questi tool. I modelli di diffusione operano aggiungendo del “rumore”, cioè elementi e caratteristiche non presenti nell’immagine iniziale, ai dati di addestramento e poi invertendo il processo per generare immagini fedeli all’originale.
Freepik
Come riportato da VentureBeat, questo approccio comporta dei rischi di sicurezza che finora non sono stati approfonditi. Nel loro studio i ricercatori descrivono un framework d’attacco chiamato BadDiffusion che consiste nell’inserire una backdoor nel modello per generare un output specifico, diverso da quello atteso dalla vittima.
Un attaccante può modificare gli step del modello per renderlo sensibile a un determinato trigger nei dati di training, e inserire poi questo trigger nel dataset in uso. La particolarità dell’attacco è che funziona solo quando, a fronte della modifica del modello, c’è uno specifico innesco nei dati; ciò significa che in circostanze normali il modello produce l’output atteso dall’utente.
Poiché senza un trigger il modello funziona come dovrebbe gli utenti non sono in grado di individuare la backdoor semplicemente analizzando le immagini generate. Il framework d’attacco è inoltre molto economico da realizzare: è sufficiente ritoccare i modelli di diffusione già disponibili sul web per inserire la backdoor e riproporre il modello compromesso sul web.
Freepik
I ricercatori hanno analizzato due possibili contromisure contro il BadDiffusion: l’Adversarial Neuron Pruning (ANP) e l’Inference-Time Clipping. Il primo si è rivelato piuttosto instabile e troppo sensibile al numero di parametri del modello; il secondo, pur essendo più semplice del primo, ha portato risultati promettenti, anche se potrebbe rivelarsi inefficace contro backdoor complesse.
Visto l’ampio utilizzo di questi modelli e la scarsità di soluzioni contro le minacce è importante investire sulla ricerca e lo sviluppo di nuove linee di difesa. Il primo passo, come sempre, è comprendere i rischi che i modelli di diffusione comportano; inoltre è opportuno verificare sempre l’autenticità dei modelli scaricati dal web.
Giu 11, 2025 0
Giu 09, 2025 0
Giu 06, 2025 0
Giu 04, 2025 0
Giu 13, 2025 0
Giu 12, 2025 0
Giu 10, 2025 0
Giu 05, 2025 0
Giu 09, 2025 0
La cybersecurity sta acquisendo sempre più importanza tra...Mag 30, 2025 0
Nel 2024, le piccole e medie imprese, spesso considerate il...Mag 27, 2025 0
MATLAB ha smesso di funzionare per quasi una settimana e...Mag 27, 2025 0
Nel corso del “TRU Security Day 2025” di...Mag 26, 2025 0
I ricercatori di Akamai hanno individuato di recente...Gen 29, 2025 0
Con l’avvento dell’IA generativa...Ott 09, 2024 0
Negli ultimi anni sempre più aziende stanno sottoscrivendo...Ott 02, 2024 0
Grazie al machine learning, il Global Research and Analysis...Set 30, 2024 0
Il 2024 è l’anno delle nuove normative di sicurezza:...Mag 21, 2024 0
Una delle sfide principali delle aziende distribuite sul...Giu 13, 2025 0
Nel gennaio 2025, i ricercatori di Aim Labs hanno...Giu 12, 2025 0
Le reti air-gapped, ovvero fisicamente separate da Internet...Giu 11, 2025 0
Nell’aggiornamento di sicurezza di giugno Microsoft...Giu 10, 2025 0
Di recente Google ha agito su un bug che consentiva...Giu 10, 2025 0
In un contesto nazionale in cui il cyber crime colpisce...