Aggiornamenti recenti Settembre 17th, 2025 4:45 PM
Apr 28, 2023 Marina Londei Approfondimenti, Attacchi, Hacking, RSS, Vulnerabilità 0
Le imprese stanno investendo sempre di più su applicazioni basate sui LLM come chatbot e tool generativi, ignorando però la presenza di una vulnerabilità molto importante: la prompt injection. Si tratta di un processo che consiste nel portare il modello generativo a generare l’output desiderato inserendo un testo specifico nella richiesta di un utente o creare input appositi per ottenere informazioni o eseguire azioni.
Nel suo blog Simon Willson ha dettagliato alcune casistiche di attacco che sfruttano la prompt injection, sottolineando che finora non ha individuato sistemi con difese contro questo tipo di attacco.
In uno degli esempi riportati nell’articolo, Willson analizza il caso di un assistente vocale in grado di leggere le email, classificare quelle importanti e riassumerne il contenuto. Poiché il tool legge le singole email per elaborarle, un attaccante può inviare un’email contenente delle specifiche istruzioni per l’assistente vocale e controllarne l’output.
Freepik
Willson menziona anche il search index poisoning come uno degli attacchi più efficaci che sfruttano i modelli generativi: inserendo delle richieste specifiche nelle pagine web, i chatbot e i motori di ricerca basati su IA come Bing possono venire manipolati nel fornire informazioni false all’utente. Similmente, l’indirect prompt injection sfrutta i prompt nascosti nei siti web per imporre nuove istruzioni al tool mentre esegue lo scraping del sito.
Infine, altri attacchi sono in grado di estrarre dati da applicazioni e database collegati ai tool, semplicemente inserendo delle query specifiche nell’input.
Quali sono le reali conseguenze di una prompt injection? Come spiega Willson, nel caso di applicazioni che si interfacciano solo col singolo utente tramite una chat non è un grosso problema. Ciò che può accadere, al massimo, è che un attaccante potrebbe essere in grado di ottenere il prompt originale del modello (prompt leaking), ma non di più.
La situazione cambia quando i tool sono integrati in altre applicazioni e vengono usati per avviare altri processi come l’invio di richieste ad API, ricerche su documenti sensibili e l’esecuzione di codice.
Pixabay
Secondo Willson non esistono metodi di protezione efficaci al 100%, ma è possibile comunque ridurre il rischio implementando dei filtri sull’input e sull’output. Nel caso un attaccante concateni un testo all’input, può essere utile condividere con l’utente il prompt effettivo utilizzato dal tool per assicurarsi che sia quello corretto.
In maniera analoga, se il tool è collegato ad altri servizi, ad esempio a un client di posta, è conveniente proporre il testo generato dell’email e attendere la conferma dell’utente prima di inviarlo.
Set 12, 2025 0
Set 11, 2025 0
Set 03, 2025 0
Ago 22, 2025 0
Set 17, 2025 0
Set 16, 2025 0
Set 15, 2025 0
Set 10, 2025 0
Set 17, 2025 0
La minaccia di MuddyWater non si arresta, anzi: negli...Set 12, 2025 0
L’intelligenza artificiale diventa non solo...Set 11, 2025 0
Il ransomware continua a dilagare e rimane la minaccia...Ago 29, 2025 0
Il prossimo 14 ottobre terminerà ufficialmente il supporto...Ago 26, 2025 0
Il mondo dell’IoT rimane uno dei più esposti alle...Gen 29, 2025 0
Con l’avvento dell’IA generativa...Ott 09, 2024 0
Negli ultimi anni sempre più aziende stanno sottoscrivendo...Ott 02, 2024 0
Grazie al machine learning, il Global Research and Analysis...Set 30, 2024 0
Il 2024 è l’anno delle nuove normative di sicurezza:...Mag 21, 2024 0
Una delle sfide principali delle aziende distribuite sul...Set 17, 2025 0
La minaccia di MuddyWater non si arresta, anzi: negli...Set 16, 2025 0
I ricercatori della compagnia di sicurezza Socket hanno...Set 15, 2025 0
La nuova squadra italiana per le competizioni di...Set 15, 2025 0
La scorsa settimana il CERT-AGID ha identificato e...Set 12, 2025 0
L’intelligenza artificiale diventa non solo...